
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

OCR Computer Science GCSE

1.2 – Memory and storage
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

1.2.1 Primary Storage (memory)

The Need for Primary Storage
Primary storage is the computer's workspace for actively running programs, and provides
fast access to data and instructions currently in use by the CPU. Without it, computers would
be significantly slower, as the CPU would need to constantly retrieve data from slower
secondary storage like hard drives. Primary storage usually consists of RAM and ROM.

RAM and ROM
RAM stands for Random Access Memory, and it is a form of main memory. RAM holds the
data and instructions that the computer is currently working with, such as the operating
system, running applications, and open documents. RAM is volatile, meaning its contents
are lost when the computer loses power (e.g., when turned off).

ROM stands for Read-Only Memory, and it is a form of main memory. It is typically used to
store firmware that is essential for the computer to boot up and operate. As the name
suggests, it is read-only; it cannot be written to or modified during normal operation. It is also
non-volatile, meaning that it retains its contents even when the power is off.

Virtual Memory
Virtual Memory is needed when a computer’s RAM is full and there are still more programs
or data that need to be loaded. It allows the system to use part of the secondary storage
(such as a hard drive or SSD) as if it were extra RAM. When this happens, the operating
system moves data that is not currently needed from RAM to virtual memory (on the hard
drive), creating space in RAM for new data. When the data in virtual memory is needed
again, it is swapped back into RAM, possibly replacing other data. This process is slower
than using RAM alone but allows the system to run more programs than it could with just
physical RAM.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

1.2.2 Secondary storage

The Need for Secondary Storage

Secondary storage is considered to be any non-volatile storage mechanism not directly
accessible by the CPU. Secondary storage is needed so that data/files can be stored on a
long-term basis, using non-volatile storage so that they are retained when the computer is
switched off.

Types of Secondary Storage
Three types of secondary storage are solid-state, optical and magnetic.

Solid-state
Solid State Drives (SSDs), and other solid state technology like flash drives, use electrical
circuits to persistently store data. They don’t have any moving parts, so are capable of far
higher read and write speeds than magnetic HDDs and are suitable for use in portable
devices like phones and tablets.

Optical
Optical disks include CDs, DVDs and Blu-rays. They store information which can be read
optically by a laser. They are typically used for the distribution of media as they have an
incredibly cheap cost per disk. However, their low capacity does not make them suitable for
storing large amounts of data (e.g., they are unsuitable for large-scale backups).

Magnetic
On a magnetic hard disk, data is represented by many, tiny magnetised regions. These
magnetic hard disks often contain moving parts. Due to these moving parts and its cheap
cost, magnetic storage is typically used to make backups of large amounts of data. However,
they are not suited for portable devices.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Comparison of Secondary Storage Devices

 Hard-disk drive Solid-state drive Optical disk

Capacity High capacity. Relatively low capacity. Very low capacity.

Read / write
speeds Good speeds. Very high speeds. Relatively low speeds.

Portability
Bulky, heavy and

easily damaged by
movement.

Lightweight and rarely
damaged by movement.

Very small and
lightweight, can be

damaged by scratches
and dirt.

Durability Contains moving parts,
prone to damage.

No moving parts, very
durable.

Easily scratched or
damaged.

Reliability Fairly reliable but
degrades over time. Very reliable. Less reliable - damage

affects data easily.

Cost Cheap per GB. Expensive per GB. Very cheap per disk,
but expensive per GB.

Suitability Good for desktop PCs
and servers.

Good for laptops,
phones and tablets.

Good for sharing and
distributing small
volumes of data.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

1.2.3 Units

Binary

Binary is used by computer systems to store all data and instructions. This is because it has
only two states, 0 or 1, which map directly to the two states of electronic components like
transistors: on (1) or off (0). This simplicity makes it easier to design, build, and maintain
computer hardware. Therefore, data needs to be converted into a binary format to be
processed by a computer.

Each digit is a bit of data. You’ll often come across the following prefixes used for decimal
numbers, and you need to be able to convert between them.

Unit Symbol Relative size

Bit b 1 bit

Nibble 4 bits

Byte B 8 bits

Kilobyte KB 1,000 bytes

Megabyte MB 1,000 kilobytes

Gigabyte GB 1,000 megabytes

Terabyte TB 1,000 gigabytes

Petabyte PB 1,000 terabytes

Note about prefixes: the specification uses decimal (base-10) prefixes, as shown in the
table above. These differ from binary prefixes (e.g. kibibyte = 1,024 bytes), but you only
need to know about the prefixes in the table above for the OCR GCSE Computer Science
(J277) exam.

To calculate the file sizes of sound, images and text files, you can use the following formulas:

 𝑆𝑜𝑢𝑛𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠) × 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ
 𝐼𝑚𝑎𝑔𝑒 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑐𝑜𝑙𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ × 𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑝𝑥) × 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ (𝑝𝑥)

 𝑇𝑒𝑥𝑡 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

The coming pages will explain how sound, images and text files are represented using
binary, and how the above formulas work.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

1.2.4 Data storage

Decimal (base 10)

Decimal is the number base that humans use to count, perhaps because we have ten
fingers. Decimal uses the ten digits 0 through to 9 to represent numbers.

Each digit in a decimal number has a place value based on powers of 10. The value of a
digit depends on its position within the number. This is illustrated by the table below, which
shows how the decimal number 237 is constructed using place values.

102 101 100

100 10 1

2 3 7

237 = (2×100) + (3×10) + (7×1)

Binary (base 2)

Each digit in a binary number has a place value based on powers of 2. This is illustrated by
the table below, which shows how the decimal number 1011 is constructed using place
values - making it equal to 11 in decimal.

23 22 21 20

8 4 2 1

1 0 1 1

1011 = (1×8) + (0×4) + (1×2) + (1×1) = 11 (decimal)

Most Significant and Least Significant Bit
The most significant bit is the bit with the highest value, which is the leftmost 1 in a binary
number. The least significant bit is the bit with the lowest value, which is the rightmost bit,
whether it is a 0 or 1, in a binary number.

Adding additional 0s to the left of a binary number does not change its value, e.g. 11010 is
the same as 00011010.

Converting Decimal ↔ Binary

To convert binary → decimal:

You can convert from binary to decimal by using place value headers. Starting with one and
increasing in powers of two, placing larger values to the left of smaller values. For example,
the binary number 10110010 could have place value headers added as follows:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

1 0 1 1 0 0 1 0

The binary number could then be converted to decimal by adding together all of the place
values with a binary one below them.

128 + 32 + 16 + 2 = 178

So the binary number 10110010 is equivalent to the decimal number 178.

To convert decimal → binary:

When converting from decimal to binary, you use the same place value headers. Starting
from the left hand side, you place a one if the value is less than or equal to your number, and
a zero otherwise.

Once you’ve placed a one, you must subtract the value of that position from your number
and continue as before, until your number becomes 0.

Let’s say we’re converting the number 53 to binary. First, write out your place value headers
in powers of two. Keep going until you’ve written a value that is larger than your number. For
53, we’re going to go up to 64.

64 32 16 8 4 2 1

Now, starting from the left, compare the place value to your number. 64 is greater than 53 so
we place a 0 under 64.

64 32 16 8 4 2 1

0

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Moving to the right, we see that 32 is lower than 53, so we place a 1 under 32.

64 32 16 8 4 2 1

0 1

Because we’ve placed a 1, we have to subtract 32 from 53 to find what’s left to be
represented. In this case, 53 - 32 = 21.

We move to the right again and find 16, which is lower than 21, so we place a 1 under 16.

64 32 16 8 4 2 1

0 1 1

Again, because we’ve placed a 1, we have to calculate a new value. 21 - 16 = 5.

Moving right, we find 8. This is larger than 5 so we place a 0.

64 32 16 8 4 2 1

0 1 1 0

After moving right again, we find 4. As 4 is lower than 5, we place a 1.

64 32 16 8 4 2 1

0 1 1 0 1

Having placed a 1, we must again calculate a new value. 5 - 4 = 1.

Moving right to find 2, we place a 0 as 2 is greater than 1.

64 32 16 8 4 2 1

0 1 1 0 1 0

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Moving right for the last time, we have 1. 1 = 1 so we place a 1.

64 32 16 8 4 2 1

0 1 1 0 1 0 1

Now that we’ve placed a 0 or a 1 under each place value, we have our answer. Although it’s
acceptable to remove any leading 0s, it may be preferable to add 0s to the start of your
answer to make it a whole number of bytes (a multiple of 8 bits).

53 = 0110101 = 110101 = 00110101

Binary addition

When adding binary numbers, there are three important rules to remember:

Binary add Result Carry

0 + 0 0 0

1 + 0 1 0

1 + 1 0 1 (carry)

You’ll only be expected to add two binary numbers of up to 8 bits.

Note: an overflow error can occur where the result of a binary addition is too large to fit into
the number of bits available. For example, if the result needs 9 bits and you only have 8
available, the extra (most-significant) bit would be lost and the final value would be incorrect.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example
Add binary integers 1011 and 1110.

 1 0 1 1

+ 1 1 1 0

 1 0 1 1

+ 1 1 1 0

 1

 1 0 1 1

+ 1 1 1 0

 1 0 1

 1 0 1 1

+ 1 1 1 0

 1 01 0 1

 1 0 1 1

+ 1 1 1 0

1 11 01 0 1

1 1 0 0 1

Place the two binary numbers above each other so that the
digits line up.

Starting from the least significant bits (the right hand side), add
the values in each column and place the total below. For the first
column (highlighted), rule 2 from above applies.

Move on to the next column. This time rule 3 applies. In this
case there is a carry digit. Place a 1 in small writing under the
next most significant bit’s column.

On to the next column, where there is a 0, a 1 and a small 1. In
this case, rule 3 applies again. Therefore the result is 10.
Because 10 is two digits long, the 1 is written in small writing
under the next most significant bit’s column.

Moving on to the most significant column where there are three
1s. Rule 4 applies, so the result for this column is 11. The first
digit of the result is written under the next most significant bit’s
column, but it can be written full size as there are no more
columns to add.

Finally, the result is read off from the full size numbers at the
bottom of each column. In this case, 1011 + 1110 = 11001.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Hexadecimal (base 16)
In contrast to decimal, hexadecimal uses the digits 0 through to 9 followed by the uppercase
characters A to F to represent the decimal numbers 0 to 15.

Decimal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F
Hexadecimal

Of all the number bases covered by this course, hexadecimal is the most compact. This
means that it can represent the same number as binary or decimal while using far fewer
digits. This makes it easier than binary to read or work with. Each character in hexadecimal
represents four bits in binary.

Each digit in a decimal number has a place value based on powers of 16. This is illustrated
by the table below, which shows how the hexadecimal value 2F is constructed using place
values - making it equal to 47 in decimal.

161 160

16 1

2 15 (because F represents 15)

​
 2F = (2×16) + (15×1) = 47 (decimal)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Converting Binary ↔ Hexadecimal

To convert binary → hex:

In order to convert from binary to hexadecimal, the binary number must first be split into
nibbles. A nibble is four binary bits, or half a byte.

For example, the binary number 10110010 would be split into two nibbles:

10110010

1011 0010

Each binary nibble is then converted to decimal as in the previous example:

8 4 2 1 8 4 2 1

1 0 1 1 0 0 1 0
8 + 2 + 1 = 11 2 = 2

Once each nibble has been converted to decimal, the decimal value can be converted to its
hexadecimal equivalent like so:

11 = B 2 = 2

Finally, the hexadecimal digits are concatenated to form a hexadecimal
representation:

10110010 = B2

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

To convert hex → binary:

First, convert each hexadecimal digit to a decimal digit and then to a binary nibble before
combining the nibbles to form a single binary number.

 B2
 Split into hexadecimal digits

 B 2
 Convert hexadecimal to decimal

 11 2
 Convert decimal to binary nibbles

 1011 0010

 Combine binary nibbles

 10110010

Converting Decimal ↔ Hexadecimal

To convert decimal → hex:

Combining the steps above:

1.​ Begin by converting the decimal number into binary
2.​ Convert this binary number to hexadecimal

To convert hex → decimal:

Combining the steps above:

1.​ Begin by converting the hexadecimal number into binary.
2.​ Convert this binary number to decimal.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Binary Shifts

A binary shift involves moving the bits of a binary number left or right. Bits shifted from the
end of the register are lost and zeros are shifted in at the opposite end of the register.

There are two types of binary shift:

●​ Left shift → moves all bits to the left (adds 0s on the right)​

○​ Same as multiplying by 2 for each place shifted​

●​ Right shift → moves all bits to the right (adds 0s on the left)​

○​ Same as dividing by 2 for each place shifted

Example
In this example, we’ll apply a binary left shift of 1 to the original binary number 00101100.
The effect of this is to multiply 44 by 2, making 88.

Original: 00101100 (44)

Shifted: 01011000 (88)

Why use binary shifts?

●​ To multiply or divide by powers of 2​

●​ Used in low-level graphics, bitmasking, compression, and encryption

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Characters

Character encoding

Character encoding is the process of converting characters (letters, numbers, symbols) into
binary codes so that they can be stored and processed by a computer’s hardware. This is
necessary because computers can only store and process binary data.

A character set, such as ASCII or Unicode, is a collection of characters and their
corresponding binary values. Every character is assigned a unique binary code, using a
standard such as ASCII or Unicode. Character codes are grouped and they run in sequence.
For example in ASCII ‘A’ is coded as 65, ‘B’ as 66, and so on, meaning that the codes for the
other capital letters can be calculated once the code for ‘A’ is known. This pattern also
applies to other groupings such as lower case letters and digits.

The number of characters stored is limited by the number of bits available, as each character
must have a unique representation in binary, and the number of possible unique
representations in binary depends on the number of bits.

The number of bits per character depends on the character set, with ASCII using 8 bits per
character and Unicode using between 8 and 32. This allows Unicode to have a greater
number of characters, as there are more unique codes possible with a greater number of
bits. Therefore, Unicode is typically used when characters from other languages, and even
emojis, need to be represented.

Calculating text file size

 𝑇𝑒𝑥𝑡 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

For example, if the string “Physics and Maths Tutor” was encoded using 7 bits per character,
then as there are 23 characters, the text file size would be:

 𝑡𝑒𝑥𝑡 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 7 × 23 = 161 𝑏𝑖𝑡𝑠

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Images

Digital images are made up of a series of tiny squares called pixels (short for “picture
elements”). A pixel is a single point in an image. Each pixel has a colour value, and this is
stored in binary.

The value assigned to a pixel determines the colour of the pixel. The example below shows
the binary representation of a simple image in which a 1 represents a black pixel and a 0
represents a white pixel.

 0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 1 0 0 0
0 1 0 0 0

The number of bits assigned to a pixel in an image is called its colour depth. In the example
above, each pixel has been assigned one bit, allowing for 2 (21) different colours to be
represented. If a colour depth of two bits were used, there would be four (22) different
colours that each pixel could take, represented by the bit patterns 00, 01, 10 and 11.

The resolution refers to the number of pixels within an image. Resolution can be found by
multiplying the image width in pixels by the image height in pixels.

00 11 11 11 11 11 00
11 11 11 11 11 11 11
11 00 01 11 00 01 11
11 00 00 11 00 00 11
11 11 11 11 11 11 11
11 11 10 10 10 11 11
00 11 11 11 11 11 00

Image metadata is data about an image such as: file format, resolution, colour depth, and
sometimes details like the device used to capture the image.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Calculating image file size

 𝐼𝑚𝑎𝑔𝑒 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑐𝑜𝑙𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ × 𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑝𝑥) × 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ (𝑝𝑥)

For example, the picture of the face has 7 × 7 = 49 pixels, each of which is assigned two
bits, so it requires 98 bits to be represented.

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 7 × 7 × 2 = 98 𝑏𝑖𝑡𝑠

Effect on image size, quality and file size
Looking at the equation above, higher widths, higher heights and higher colour depths will all
increase an image’s file size.

Increases in… Effect on…

Resolution Higher quality & higher file size

Colour depth Higher quality & higher file size

Sound

Analogue signal

Digital signal

Sound is analogue, meaning that its signal is a continuous wave that can take any value.
Computers cannot store continuous sound waves, so they take regular snapshots (samples)
of the sound wave’s amplitude. A sample is a measure of amplitude at a point in time - each
sample is stored as a binary number.

The sampling rate is the number of samples taken in a second and is usually measured in
hertz (1 hertz = 1 sample per second).

The bit depth is the number of bits available to store each sample.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Calculating sound file size
 𝑆𝑜𝑢𝑛𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑠) × 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ

To calculate the file size of a sound file in bytes, divide the file size in bits by 8.

Example
For a sound file with a:

●​ Sample rate = 44,000 Hz​

●​ Duration = 10 seconds​

●​ Sample resolution = 16 bits​

 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 44000 × 10 × 16 = 7040000 𝑏𝑖𝑡𝑠

Effect on playback quality and file size

Increases in… Effect on…

Sampling rate Higher playback quality & larger file size

Bit depth Higher playback quality & larger file size

An increase in both sampling rate and bit depth make the digital sound wave more accurate
to the real analogue wave. This increases the quality of the audio.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

1.2.5 Compression

Data compression is the process of reducing the file size of digital data without losing the
original information (or with minimal acceptable loss). It is used to save storage space and
speed up transmission.

Why compress data?

●​ Saves storage space​

●​ Speeds up file transfer​

●​ Reduces bandwidth usage​

●​ Helps with faster downloads and streaming​

Types of compression

Lossy compression
When using lossy compression, some information is lost in the process of reducing the file’s
size. This could cause the quality of the file to be slightly reduced; the compressed file can
never be fully restored to the original.

Used for:

●​ Images​

●​ Audio​

●​ Video

Pros Cons

 ✔ Smaller file size ✘ Loss of quality

 ✔ Faster to send/store ✘ Irreversible (original data gone)

Lossless compression
In contrast to lossy compression, there is no loss of information when using lossless
compression. The size of a file can be reduced without decreasing its quality. Lossless
compression methods use algorithms to find and compress patterns (e.g. repeated data).

Pros Cons

 ✔ No loss of quality ✘ Less reduction in size compared to
lossy

 ✔ Reversible

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	The Need for Primary Storage
	RAM and ROM
	RAM stands for Random Access Memory, and it is a form of main memory. RAM holds the data and instructions that the computer is currently working with, such as the operating system, running applications, and open documents. RAM is volatile, meaning its contents are lost when the computer loses power (e.g., when turned off).
	ROM stands for Read-Only Memory, and it is a form of main memory. It is typically used to store firmware that is essential for the computer to boot up and operate. As the name suggests, it is read-only; it cannot be written to or modified during normal operation. It is also non-volatile, meaning that it retains its contents even when the power is off.
	Virtual Memory
	The Need for Secondary Storage
	Types of Secondary Storage
	Solid-state
	Optical
	Magnetic
	Comparison of Secondary Storage Devices

	Binary
	Decimal (base 10)
	Binary (base 2)
	Most Significant and Least Significant Bit

	Converting Decimal ↔ Binary
	To convert binary → decimal:
	To convert decimal → binary:
	Example

	
	Hexadecimal (base 16)
	Converting Binary ↔ Hexadecimal
	Converting Decimal ↔ Hexadecimal
	To convert decimal → hex:
	To convert hex → decimal:
	Binary Shifts
	There are two types of binary shift:
	Example

	Why use binary shifts?
	Characters
	Character encoding

	Character encoding is the process of converting characters (letters, numbers, symbols) into binary codes so that they can be stored and processed by a computer’s hardware. This is necessary because computers can only store and process binary data.
	A character set, such as ASCII or Unicode, is a collection of characters and their corresponding binary values. Every character is assigned a unique binary code, using a standard such as ASCII or Unicode. Character codes are grouped and they run in sequence. For example in ASCII ‘A’ is coded as 65, ‘B’ as 66, and so on, meaning that the codes for the other capital letters can be calculated once the code for ‘A’ is known. This pattern also applies to other groupings such as lower case letters and digits.
	The number of characters stored is limited by the number of bits available, as each character must have a unique representation in binary, and the number of possible unique representations in binary depends on the number of bits.
	The number of bits per character depends on the character set, with ASCII using 8 bits per character and Unicode using between 8 and 32. This allows Unicode to have a greater number of characters, as there are more unique codes possible with a greater number of bits. Therefore, Unicode is typically used when characters from other languages, and even emojis, need to be represented.
	Calculating text file size

	
	Images
	Digital images are made up of a series of tiny squares called pixels (short for “picture elements”). A pixel is a single point in an image. Each pixel has a colour value, and this is stored in binary.
	Image metadata is data about an image such as: file format, resolution, colour depth, and sometimes details like the device used to capture the image.
	
	Calculating image file size

	Sound
	Sound is analogue, meaning that its signal is a continuous wave that can take any value. Computers cannot store continuous sound waves, so they take regular snapshots (samples) of the sound wave’s amplitude. A sample is a measure of amplitude at a point in time - each sample is stored as a binary number.
	The sampling rate is the number of samples taken in a second and is usually measured in hertz (1 hertz = 1 sample per second).
	The bit depth is the number of bits available to store each sample.
	Calculating sound file size
	Example

	An increase in both sampling rate and bit depth make the digital sound wave more accurate to the real analogue wave. This increases the quality of the audio.
	Data compression is the process of reducing the file size of digital data without losing the original information (or with minimal acceptable loss). It is used to save storage space and speed up transmission.
	Why compress data?
	●​Saves storage space​
	●​Speeds up file transfer​
	●​Reduces bandwidth usage​
	●​Helps with faster downloads and streaming​
	Types of compression
	Lossy compression

	Used for:
	●​Images​
	●​Audio​
	●​Video
	Pros
	Cons
	 ✔ Smaller file size
	 ✘ Loss of quality
	 ✔ Faster to send/store
	 ✘ Irreversible (original data gone)
	Lossless compression

	Pros
	Cons
	 ✔ No loss of quality
	 ✘ Less reduction in size compared to lossy
	 ✔ Reversible
	
	

